

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 2nd Semester Examination, 2019

CMSACOR04T-COMPUTER SCIENCE (CC4)

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

GROUP-A

1. Answer any five questions from the following:

 $2 \times 5 = 10$

- (a) Construct a truth table for the compound proposition: $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$.
- (b) What is called graph isomorphism?
 - (c) How many permutations are there in the word "MALAYALAM"?
 - (d) Define a Semigroup.
- (e) Define Big-O Notation.
 - (f) Give an example of a lattice that is not complemented.
- (g) Show that in a Boolean algebra ab' + a'b = 0 iff a = b.
 - (h) Find the recurrence relation of the sequence $S(n) = a^n : n \ge 1$.

GROUP-B

Answer any four from the following

 $10 \times 4 = 40$

- 2. (a) Prove that $\sum_{k=1}^{n} \theta(f_k(n)) = \theta(\sum_{k=1}^{n} f_k(n))$ by using the linearity property of 3+3+4 summations.
 - (b) Show that the solution to $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ is $0(n \ lg \ n)$ by using substitution method of solving recurrences.
 - (c) Solve the following recurrence by using recursion tree: $T(n) = 2T(n/4) + \sqrt{n}$.
- 3. (a) Prove that the number of different permutations of n objects, where there are n_1 indistinguishable objects of type 1, n_2 indistinguishable objects of type 2,, and n_k indistinguishable objects of type k, is $\frac{n!}{n_1! \quad n_2! \dots n_k!}$.
 - (b) Suppose that every student in a discrete structures class of 25 students is a freshman, a sophomore, or a junior. Show that there are either at least three freshman, at least 19 sophomores or at least five juniors in the class.

CBCS/B.Sc./Hons./2nd Sem./Computer Science/CMSACOR04T/2019

- (c) How many positive integers between 100 and 999 inclusive -
 - (i) are not divisible by either 3 or 4?
 - (ii) have the same three decimal digits?
- 4. (a) What is the truth value of the quantification $(\exists x)$ Q(x) if the statement Q(x) and 2+4+2+2 universe of discourse is given as follows?

 $Q(x): x^2 < 12$, where U = {positive integers not exceeding 3}.

- (b) Let p denote the statement, 'The weather is nice' and q denote the statement, 'we have a picnic'. Translate the following in English and simplify if possible: -
 - (i) $\neg q \leftrightarrow \neg p$; (ii) $\neg (\neg p \lor q) \lor \neg (p \land \neg q)$
- (c) Show that the following argument is a fallacy:

$$p \to q$$
, $\neg p \vdash \neg q$.

- (d) Show that $[(p \rightarrow q) \land \neg q] \rightarrow \neg p$ is a tautology.
- 5. (a) What is a Multigraph? Describe with an example.

2+2+2+4

- (b) What is called the eccentricity of a vertex?
- (c) Differentiate between the adjacency and incidence matrix representations of a particular graph by taking an example.
- (d) Prove that a simple graph with *n*-vertices and *k*-components can have at most (n-k)(n-k+1)/2 edges.
- 6. (a) Prove that a graph is a tree if and only if it is minimally connected.

2

(b) What is a Spanning Tree? Give an example.

2

(a) What is a bipartite graph? What are the properties of Kuratowski's two graphs?

2+2

2

(d) What is a chromatic number?

7. (a) Use mathematical Induction to prove that $1.1! + 2.2! + ... n.n! = (n+1)! - 1 \forall n \ge 1$

4+3+3

(b) Solve the recurrence relation

$$a_n = -4a_{n-1} - 4a_{n-2}$$
, $a_0 = 0$ and $a_1 = 1$

- (c) Sort the following array by using Bubble Sort (7, 0, 2, 10, 5)
- 8. (a) Prove that $\sim (p \wedge q) \equiv \sim p \vee \sim q$

4+3+3

- (b) Suppose repetitions are not permitted. How many 3-digit numbers can be formed from six digits 2, 3, 4, 5, 7 and 9?
- (c) Explain valid argument and universal quantifier.

____×__